On the Orthogonal Tableaux of Koike and Terada∗
نویسندگان
چکیده
Many different definitions have been given for semistandard odd and even orthogonal tableaux which enumerate the corresponding irreducible orthogonal characters. Weightpreserving bijections have been provided between some of these sets of tableaux (see [3], [8]). We give bijections between the (semistandard) odd orthogonal Koike-Terada tableaux and the odd orthogonal Sundaram-tableaux and between the even orthogonal Koike-Terada tableaux and the even orthogonal King-Welsh tableaux. As well, we define an even version of orthogonal Sundaram tableaux which enumerate the irreducible characters of O(2n).
منابع مشابه
Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters
We give bijective proofs for Jacobi{Trudi-type and Giambelli-type identities for symplectic and orthogonal characters. These proofs base on interpreting King and El-Sharkaway's symplectic tableaux, Proctor's odd and intermediate symplectic tableaux, Proctor's and King and Welsh's orthogonal tableaux, and Sundaram's odd orthogonal tableaux in terms of certain families of nonintersecting lattice ...
متن کاملA bijection between Proctor's and Sundaram's odd orthogonal tableaux
An explicit bijection between Proctor's odd orthogonal tableaux and Sundaram's odd orthogonal tableaux is given.
متن کاملHook-content Formulae for Symplectic and Orthogonal Tableaux
By considering the specialisation sλ(1, q, q , . . . , q) of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape λ in terms of two properties of the boxes in the diagram for λ. Using specialisations of symplectic and orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for the number of semi...
متن کاملThe representation theory of the Ariki-Koike and cyclotomic q-Schur algebras
The Ariki-Koike algebras were introduced by Ariki and Koike [8] who were interested in them because they are a natural generalization of the Iwahori-Hecke algebras of types A and B. At almost the same time, Broué and Malle [21] attached to each complex reflection group a cyclotomic Hecke algebra which, they conjectured, should play a role in the decomposition of the induced cuspidal representat...
متن کاملBrauer Diagrams, Updown Tableaux and Nilpotent Matrices
We interpret geometrically a variant of the Robinson-Schensted correspondence which links Brauer diagrams with updown tableaux, in the spirit of Steinberg’s result [32] on the original Robinson-Schensted correspondence. Our result uses the variety of all (N , ω, V) where V is a complete flag in C2n, ω is a nondegenerate alternating bilinear form on C2n, and N is a nilpotent element of the Lie a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013